
Simon Foley
1 / 21

Buffer Overflow Vulnerabilities and Stack Smashing

Simon Foley

January 7, 2014



Simon Foley



Simon Foley



Simon Foley



Simon Foley



Simon Foley



Simon Foley



Simon Foley

Special Permissions: SUID

8 / 21

When a program is invoked, it runs with the the user id of its invoking
process.

When a program file has the setuid root permission set then during
execution the user id of the invoking process becomes root.

$ ls −l /bin/sleep
−r−xr−xr−x 1 root wheel 13964 Jan 30 2006 /bin/sleep
$ sleep 60 & ps −u | grep sleep
simon 6514 0.0 0.0 27244 340 p1 S 11:03AM 0:00.01 sleep 60
$
$ ls −l /usr/bin/passwd
−r−sr−xr−x 1 root wheel 35572 Jan 12 2007 /usr/bin/passwd
$ passwd ... & ps −u | grep passwd
root 6523 0.0 0.0 27256 356 p1 S 11:06AM 0:00.01 passwd



Simon Foley



Simon Foley

Example: Ping of Death

10 / 21

Internet Control Message Protocol

C → S ICMP Echo Request[optional string]

S → C ICMP Echo Reply

IP stack implementation on Server S did not do adequate bounds checking
on optional string and an overflow occurs when message is greater than 64K

Attacker sends a specially formatted string which results in server executing
some command.

Most implementations have been patched to include proper bounds
checking.

Some older OS’s do not have patches available for Ping of Death (eg
Solaris 2.4, Win 95, MacOS 7, Novell Netware 3, . . . ).



Simon Foley

Sample Ping of Death Overflow String

11 / 21

The following is a (partial) example of of a ‘HACK’ string, which when
passed to ping on an old unix platform will cause a buffer overflow and
returns with a shell running at root (rootshell).

unsigned int code[]={0x4ffffb82 , 0 x4ffffb82 , ... // large nr NOPs
0x7c0802a6 , 0x9421fbb0 , 0x90010458 , 0x3c60f019 ,
0x60632c48 , 0x90610440 , 0x3c60d002 , 0x60634c0c ,
0x90610444 , 0x3c602f62 , 0x6063696e , 0x90610438 ,
0x3c602f73 , 0x60636801 , 0 x3863ffff , 0x9061043c ,
0x30610438 , 0x7c842278 , 0x80410440 , 0x80010444 ,
0x7c0903a6 , 0x4e800420, 0x0 };

$ ls −l /sbin/ping
−r−sr−xr−x 1 root wheel 33264 Oct 15 23:53 /sbin/ping
$ whoami
simon
$ pingme # a program that invokes ping, passing above string
$ whoami
root



Simon Foley

The SQL Slammer Worm [2003]

12 / 21

The SQL Slammer Worm caused a denial of service on some Internet hosts
and dramatically slowed down general Internet traffic, starting at 05:30
UTC on January 25, 2003. It spread rapidly, infecting most of its 75,000
victims within 10 minutes. It exploited two buffer overflow bugs in
Microsoft’s SQL Server database management system.

� Get Inside. Send request to SQL Server causing stack smashing
attack.

� Choose Victims at Random. Generate a random IP address, targeting
another computer that could be anywhere on the Internet.

� Replicate. Slammer uses its own code as code to be executed from
the stack smash.

� Repeat. After sending off the first tainted packet, Slammer loops
around immediately to send another to a different computer.



Simon Foley

SQL Slammer (Saphire) Worm after 30 mins

13 / 21

The diameter of each circle is a function of the logarithm of the number of
infected machines, so large circles visually underrepresent the number of
infected cases in order to minimize overlap with adjacent locations.



Simon Foley

Stack Smashing: some more examples

14 / 21

Server-based application systems that do not have adequate bounds
checking on input channel/port:

� SQL slammer worm (MSQLServ 2003);

� Code red worm (MS IIS 5.0, 2001); . . .

Set-uid programs that may run at higher privilege than caller:

� lprm, lpr, crontab, xterm, libc, glibc, samba, ftp, . . .

Compilers/interpreters that generated code that result in buffer-overflow:

� Perl, JVM, . . .

Make sure your software is always patched and up to date! Be careful when
using program libraries. Even if your own code is free of buffer-overflows, it
may invoke library code that contains problems. glibc generally considered
safer than libc.

Stack smashing also used on XBox, iPhone, . . . to run unlicensed software.

50% of home computers are unpatched [Symantec, March, 2006]



Simon Foley



Simon Foley



Simon Foley



Simon Foley



Simon Foley



Simon Foley

Stuxnet



Simon Foley

Some Defenses against Stack Smashing

21 / 21

Stack smashing is difficult to get ‘right’: we need to find the vulnerable
buffer, find the position of the RET, etc. Once a buffer vulnerability has
been identified the exploit is often implemented as a script that can be used
by a relative novice (’script kiddie’). Tools like metasploit provide a range
of off the shelf exploit scripts.

Avoiding stack smashing: bound check your arrays!

Don’t use C, use a type-safe language such as Java. However some JVM
implementations contain errors in type-checking systems that can be
exploited.

If you use C then use a patched version of C compiler that provides bound
checking. Has performance implications.

Stackguard: a gcc extension/option that puts a random ’canary word’ in
front of the RET value on the stack. This is checked just before the
function returns and if different then the program exits. Can be bypassed if
attacker can guess the canary word and place it on the stack
Stackguard/ProPolice is now default for gcc in most linux distributions.


	
	
	
	
	
	
	Special Permissions: SUID
	
	Example: Ping of Death
	Sample Ping of Death Overflow String 
	The SQL Slammer Worm [2003]
	SQL Slammer (Saphire) Worm after 30 mins
	Stack Smashing: some more examples
	
	
	
	
	
	
	Some Defenses against Stack Smashing

